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Abstract 

An objective metric that can predict the perceived 
difference of a processed image from an original would be 
very useful in optimizing image-processing algorithms 
(e.g., JPEG compression). Ideally, such a metric must be 
validated against human data before it is used in real 
imaging applications. There have been numerous efforts to 
develop such metrics and a few attempts to validate these 
metrics, but none of the previous validation work intended 
to cover a wide range of image differences. As a result, the 
metric developed may not be useful for general purposes. 
In the present study, we developed a comprehensive 
database of images and psychophysical data and used it as 
a tool to test various models of image difference. Several 
image manipulations were performed to introduce image 
differences of different types (such as density shift, JPEG 
compression, and image blur). A psychophysical study was 
performed to obtain subjective evaluations of image 
differences from ten observers. As a first step, we tested 
CIE 2000 and S-CIELAB models against the database. Our 
results indicate that simple models, such as the CIE 2000 
color difference model, can predict density shift and image 
blur well, but models that incorporate spatial components 
(such as S-CIELAB) are better in predicting the results of 
JPEG compression. 

Introduction 

An objective metric that can predict the perceived 
difference of a processed image from an original would be 
very useful in developing image-processing algorithms. For 
example, it can be used to predict the effect of an image-
processing algorithm (e.g., JPEG compression). Ideally, 
such a metric must be validated against human data before 
it is used in real imaging applications. However, because 
of the tremendous amount of work needed in collecting 
human data and validating a model, the state-of-the-art in 
validation of image-difference models appears to lag the 
development of image-difference models. Numerous 
image-difference models have been developed in recent 
years.1-6 In contrast, only a few studies have been published 
that applied the psychophysical approach for model 
validation.7-10 

Model validation can take different approaches. One 
approach is to measure the responses of human observers 
to image differences at the pixel level.7 Because the output 
of an image-difference model is a pixel-by-pixel map, the 

model output can be directly compared with the 
measurement from the human observers. The drawbacks of 
this approach are that the process of acquiring data is 
extremely tedious, and a model validated this way cannot 
be applied directly in a real imaging situation. For 
example, such a model cannot answer the question: “If two 
image pairs have different image-difference maps, are they 
perceived to be different?” A second approach would be to 
have human observers judge the overall image difference 
and use the data to validate a model.8-9 To apply this 
approach, integration rules must be developed to link the 
pixel map output by the model to the single number given 
by the human observers. Simple statistical quantities, such 
as mean, median, and standard deviation, have typically 
been used to perform this integration. More complicated 
methods include using Minkowski and probability 
summation. The integration rules continue to be a subject 
of study because there is not yet any robust psychological 
evidence for how human observers integrate local 
differences into one global impression. A third approach10 
is a compromise of the previous two. In this approach, an 
image is divided into small blocks, and a human observer 
rates each block for image difference. A statistical 
predictor is derived from the pixel-by-pixel map for each 
individual block, and linked with the human rating data. 
This approach is almost as demanding as the first one, in 
terms of human data collection. Unfortunately, it also has 
the same disadvantage of the second approach because the 
local differences must be integrated to allow the model to 
be assessed. 

An ideal image-difference model would be able to 
predict image differences for any application. To validate 
such a model, the database for human responses must 
contain a variety of image differences. Images can be 
different along many dimensions such as in color or in the 
spatial domain. Image differences can also differ based on 
how the energy is distributed across an image. For 
example, some differences are local (e.g., image blur), 
while others are global in nature (e.g., density shift). Some 
local differences are edge related (e.g., image sharpening), 
while others are object related (e.g., saturation boost). 
Different conditions, as mentioned above, can be used to 
test different aspects of an image-difference model.  

In the present study, we developed a comprehensive 
database of images and psychophysical data and used it as 
a tool to test various models of image differences. Several 
image manipulations were performed to introduce image 
differences of different types (such as density shift, image 
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blur, and JPEG compression). The manipulations were 
performed in a parametric way so that the psychophysical 
data would allow an estimation of both within and between 
scene effects. Magnitude estimation was performed to 
obtain subjective evaluations of image differences from ten 
observers. As a first step, we tested CIE 2000 and S-
CIELAB models against the database. Pixel-by-pixel 
image-difference maps were generated by each of the two 
models. Next, numerous statistical predictors were derived 
from the image-difference maps. The relationship between 
the model predictors and the subjective ratings were 
evaluated. It has been shown that simple models, such as 
the CIE 2000 color difference model, can predict density 
shift and image blur well, but models that incorporate 
spatial components (such as S-CIELAB) are better in 
predicting the results of JPEG compression.  

Methods 

Eight test scenes were used as originals in the present 
study. They represented a variety of subject matter, such as 
people, animal, and landscape. The images also had 
different spatial frequency content, colorfulness, and were 
with or without the presence of memory colors. Three 
manipulations were applied to the original images. For 
density shift, an equal amount of code value shift was 
applied to R, G, and B channels of all pixels in the image 
in the ERIMM color space.11 The amount of the code value 
shift was used as a control parameter. For image blur, 
unsharp masking was applied to the original images in the 
ERIMM color space. The control parameter for image blur 
was the gain of the unsharp masking algorithm. JPEG-DCT 
baseline compression scheme was applied for JPEG 
compression in sRGB space. A Q-table was designed for 
the viewing conditions used in the present study. The scale 
factor of JPEG-DCT was used as a control parameter. For 
each scene, nine parameter levels were selected. The 
visible image differences between the original and the 
processed images ranged from small to large. The test 
stimuli were AgX color images printed on a calibrated 4-
inch CRT printer. The CRT printer was characterized, and 
had a resolution of 250 DPI. All images were converted 
from their original color spaces to the printer code value 
space prior to printing.  

The three manipulations resulted in different types of 
image differences. Figure 1 shows the code value 
differences between the original and the processed images 
for one of the scenes. In the difference images, the bright 
areas have bigger differences compared to the dark areas. 
Images with density shift manipulation had global and 
color-related differences (Fig. 1b). Images with blur 
manipulation had local and edge-related differences (Fig. 
1c). Images with JPEG compression had local and edge-
related differences when the compression level was low, 
and had global and blocking type of differences when the 
compression level was high (Fig. 1d).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. One original image (a) and image differences 
introduced by (b) density shift, (c) image blur, and (d) JPEG 
compression. 
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The experiment was conducted in a gray room. The 
walls were painted with a neutral color (Munsell color 
N/5). The illumination was CIE Standard Daylight D5000. 
A headrest restrained the forehead of the observers, and the 
viewing distance was fixed at 16 inches. The test stimuli 
were presented against a large gray wood panel (21" x 
23"). There were two rails on the panel. On the top rail, 
there were three images. The one in the center was always 
the original image. One image on the side was also the 
original image, and the other was a processed image. On 
the bottom rail, there was a reference print that had two 
neutral patches against a neutral background. The 
background had an L* of 50. The two neutral patches 
served as a reference pair for image difference and had a 
luminance difference of 10 ∆E Units.  

In one session, the observers would see stimuli with 
only one manipulation. They were shown examples of the 
type of image difference that would occur in the session 
but were not given any verbal description of the image 
difference. In each trial, the observers would see a triplet 
of the test images and were asked to indicate which image 
on the side was different from the center image, and to rate 
the image difference in relation to the reference pair. The 
reference pair was given a difference rating of 100. 
Another trial would start after the experimenter recorded 
the response. There were 72 image pairs in each session (8 
scenes x 9 manipulation levels). The order of presenting 
the stimuli was randomized. Difference manipulations 
were presented in different sessions. Ten observers 
participated in the study. They all had normal or corrected-
to-normal visual acuity and normal color vision. 

Two results came out of the study. The 2 AFC constant 
stimuli method gave results that could be used to derive a 
detection threshold. The magnitude-estimation method 
gave a rating result in relation to the magnitude of image 
difference shown for the particular image pair. In this 
paper, we will only discuss the rating results. A data-
cleaning step was performed on the rating data based on 
results of a “null trial,” i.e., the response of an observer 
when all three images are the same. After the data 
cleaning, the arithmetic mean of responses from all 
observers was calculated. This was used as the overall 
image-difference rating for an image pair. 

For model testing purposes, the test images were 
converted from the printer code value space back to the 
PCS space via an inverse ICC profile and, finally, to the 
CIE XYZ space. The XYZ images were taken as the input 
to the image-difference models. Two models were tested in 
the present study: the CIE 2000 color difference model and 
the Spatial-CIELAB model (S-CIELAB).3 The CIE 2000 
color difference model is the state-of-the-art in predicting 
color differences for large, uniform color patches. It is yet 
to be proven that this model can be used to predict color 
differences for digital images. The original S-CIELAB 
codes were modified so that the CIE 2000 color difference 
model was used as the back end for this model. Compared 
to the CIE 2000 color difference model, S-CIELAB model 
is one step closer to simulating the human visual system in 

that it incorporates contrast sensitivity functions for the 
three opponent color channels.  

Results 

Rating Results 
As mentioned in the Methods section, the 

manipulations were performed in a parametric manner by 
way of changing the control parameter. Figure 2 (a, b, and 
c) shows the rating results in each of the three 
manipulations. Each line in the figures represents a single 
scene with varying parameter level. As can been seen from 
the figures, the rating results increased monotonically with 
the increase in parameter level for almost all scenes and all 
manipulations. The mean ratings for difference scenes, 
however, can be very different for a given parameter level, 
indicating scene dependency in the manipulations. Scene 
dependency is the greatest for JPEG compression, and is 
the smallest for image blur. A good image-difference 
model should be able to predict perceived image difference 
across scenes and, hence, largely reduce scene dependency. 

Figure 3 shows the standard error of the mean (SEM) 
as a function of the mean rating for each of the 
manipulations. There is considerable amount of variation 
between observers in their responses to the image 
differences. In general the SEM increases with the increase 
of the mean rating. JPEG compression seems to have 
smaller SEMs compared to the other two manipulations.  

Model Prediction by CIE 2000 Color Difference Model  
The CIE 2000 color-difference model was applied to 

each image pair to generate a pixel-by-pixel image-
difference map. The statistical means were extracted from 
the difference map as model predictors including regular 
means, such as minimum, maximum, mean, standard 
deviation, and the 25, 50, 75, and 95 percentiles. The 
mean, median, and standard deviation were also calculated 
for the non-zero pixels in the image-difference map. The 
correlation coefficients between each of the statistical 
predictors and the human rating results were calculated for 
all 72 image pairs in each manipulation. These correlation 
coefficients are referred to as the correlation coefficients 
for the pooled data. The statistical predictors that showed 
high correlations were identified, as shown in Table 1.  

The far-right column of Table 1 shows the highest 
correlation between the rating responses of any two 
observers in the psychophysical study for that particular 
manipulation. This correlation sets an upper limit for the 
model fitting to the experimental data. If the model 
correlation were higher than the upper limit, the model 
would be fitting noise instead of meaningful variation. The 
results show that the CIE 2000 predictions are performing 
well for density shift and image blur. The correlation 
between model predictors and the mean ratings are equal 
or beyond the upper limit for the two manipulations. The 
prediction for JPEG compression, however, is very poor, 
i.e., much lower than the upper limit. Another interesting 
finding is that different statistical predictors provided the 
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best fit to the human data for different manipulations. For 
example, if the mean difference were used to predict the 
image blur data rather than the maximum, the correlation 
would be reduced from 0.928 to 0.774. Conversely, if the 
maximum difference were used to predict the density 
results, the correlation would also be much lower than if 
the mean value were used (0.646 vs. 0.954).  

 
 

0

20
40
60

80
100

120
140
160

0 50 100 150 200 250 300 350

Paramter level

M
en

a 
ra

ti
n

g

scene1

scene2

scene3

scene4

scene5

scene6

scene7

scene8

 
Figure 2(a) Density shift rating results. 
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Figure 2(b). Image blur rating results. 
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Figure 2(c). JPEG compression rating results. 
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Figure 3. Standard error of the mean (SEM) as a function of the 
mean rating for all three manipulations.  

Table 1. The Correlation Between CIE 2000 Model 
Predictors and Human Ratings for the Pooled Data 
Manipulation Mean Maximum NZSTD Upper 

Limit 
Density shift 0.954 0.646 0.852 0.907 
Image blur 0.774 0.928 0.858 0.926 

JPEG 
compression 

0.311 0.395 0.368 0.896 

 
 

Table 2. The Correlation Between CIE 2000 Model 
Predictors and the Human Ratings for Individual Scenes 

Scene Densit
y shift 

Image blur JPEG compression 

 Mean Maximum Maximum 
1 0.970 0.917 0.937 
2 0.983 0.996 0.792 
3 0.980 0.929 0.850 
4 0.966 0.984 0.860 
5 0.988 0.982 0.684 
6 0.981 0.994 0.869 
7 0.978 0.990 0.955 
8 0.977 0.991 0.935 

Average 0.978 0.973 0.860 
 
 
Table 2 shows how well the identified CIE 2000 model 

predictors could be used to linearly fit the rating results for 
individual scenes. The correlation coefficient between the 
model predictor and the human rating data was calculated 
for each individual scene and individual manipulation. For 
the density shift, the model predictor (mean difference) 
could linearly fit the rating results of all scenes well 
(correlation coefficient >0.96). For image blur, the model 
predictor (maximum difference) predicted two scenes 
poorer compared to the others (scenes 1 and 3). In general, 
a linear model could describe the rating data for individual 
scenes well. For JPEG compression, the model predictor 
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(maximum difference) could linearly predict only three of 
the scenes fairly well (scenes 1, 7, and 8). This suggests 
that the model predictor from CIE 2000 is not a good 
predictor for the JPEG compression. 

Model Prediction by the S-CIELAB Model 
The S-CIELAB model was applied to each image pair 

to generate a pixel-by-pixel image-difference map. The 
same statistical predictors as used above were calculated 
from the image-difference map. The correlation 
coefficients between each of the statistical predictors and 
the human rating results were calculated for all 72 image 
pairs in each manipulation. The statistical predictors with 
high correlation coefficients were identified for each of the 
manipulations, as shown in Table 3. 

The results in Table 3 show that density shift could be 
predicted equally well by the S-CIELAB model using the 
same predictor (mean difference). For image blur, the S-
CIELAB prediction (maximum difference) was slightly 
worse than the prediction by the CIELAB model. For JPEG 
compression, however, the S-CIELAB model provided a 
much better prediction than did the CIE 2000 model (even 
though the correlation is still lower than the upper limit). 
The non-zero standard deviation provided the best 
prediction for JPEG compression. The difference numbers 
in a row show that if a sub-optimal model predictor were 
used in predicting ratings results, the correlation would be 
lower. 

 

Table 3. The Correlation Between S-CIELAB Model 
Predictors and the Human Ratings for the Pooled Data  

Manipulation Mean Maximu
m 

NZSTD Upper 
Limit 

Density shift 0.951 0.771 0.821 0.907 
Image blur 0.697 0.830 0.740 0.926 
JPEG 
compression 

0.739 0.571 0.763 0.896 

 
 
 
 
 
 
 

Table 4 shows how individual scenes could be 
described in a linear fashion by the identified S-CIELAB 
model predictors. The correlation coefficient between the 
model predictor and the human rating was calculated for 
each individual scene. For density shift the model predictor 
(mean difference) could linearly fit the rating results of all 
scenes well (correlation coefficient > 0.97). For image blur 
the model predictor (maximum difference) showed poorer 
linearity in two scenes (scenes 1 and 4) compared to the 
others. For JPEG compression the model predictor 
(NZSTD) could linearly predict only two of the scenes well 
(scenes 1 & 8).  

 

Table 4. The Correlation Between CIE 2000 Model 
Predictors and the Human Ratings for Individual Scenes 

Scene Density 
shift 

Image blur JPEG 
compression 

 Mean Maximum NZSTD 
1 0.970 0.710 0.905 
2 0.987 0.982 0.788 
3 0.982 0.925 0.780 
4 0.975 0.844 0.898 
5 0.990 0.945 0.688 
6 0.983 0.953 0.673 
7 0.984 0.983 0.838 
8 0.978 0.931 0.960 

Average 0.981 0.909 0.816 
 
 

As mentioned before, the experimental design in the 
present study would allow an estimation of the model 
performance for both within and between scene effects. 
Table 5 shows the relationship between the average model 
prediction for individual scenes (the middle column) and 
for the pooled data (the second column to the right). If 
there were no scene dependency, i.e., a single model 
predictor would predict the rating results across scenes, the 
average correlation for individual scenes should be very 
close to the correlation for the pooled data. The results 
showed that the average correlation for individual scenes is 
always higher than that for the pooled data. The ratio of the 
two, as shown in the far-right column, can be used as a 
measure of scene dependency. The higher the ratio, the 
smaller the scene dependency. 

 
 

Table 5. Measure of Scene Dependency 
Model Manipulation Average 

correlation 
(A) 

Pooled 
correlation 

(B) 

Measure of scene 
dependency 

(B/A) 
Density shift 0.978 0.954 0.975 
Image blur 0.973 0.928 0.954 

CIE 2000 

JPEG compression 0.860 0.395 0.459 
Density shift 0.981 0.951 0.969 
Image blur 0.909 0.830 0.913 

S-CIELAB 

JPEG compression 0.816 0.763 0.935 
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For the density shift, the two models gave very similar 
results for both the individual scenes and the pooled data. 
As a result, the measures of scene dependency also were 
similar. For image blur, the CIE 2000 model fit both 
individual scenes and the pooled results better than the S-
CIELAB model. The scene dependency was also slightly 
smaller for the CIE 2000 model. For JPEG compression, 
the CIE 2000 model performed better than the S-CIELAB 
in predicting individual scenes but did poorly for the 
pooled data. Scene dependency is much greater for CIE 
2000 than for the S-CIELAB model. This suggests that S-
CIELAB predicted fairly well for the pooled data, mainly 
because of the reduction in scene dependency. 

Conclusions  

The rating results were obtained from ten observers for 
three image manipulations (density shift, image blur, and 
JPEG compression). The results showed monotonic 
increase with increase in the level of the control 
parameters. The variation among responses of observers, as 
measured by the standard error of the mean, increased with 
the increase in mean rating.   

Both the CIE 2000 color-difference model and the S-
CIELAB model were applied to predict the difference 
between the original and the processed images. For both 
models, the arithmetic mean of the pixel-by-pixel image 
differences was identified as the predictor for density shift, 
and the maximum image difference was identified as the 
predictor for image blur. For JPEG compression, none of 
the predictors out of the CIE 2000 model would predict the 
rating results well, and the non-zero standard deviation was 
identified as the best predictor for the S-CIELAB model. 
The improvement of the S-CIELAB prediction over the 
CIE 2000 prediction was mainly a result of the reduction in 
scene dependency. 

In the present study, we developed a database of 
images and psychophysical data that covered a variety of 
image differences. We presented one approach of using the 
database to test two image-difference models. We 
demonstrated that there are a significant amount of errors 
in model prediction for some of the manipulations. We also 
showed that there are varying amounts of scene 
dependency in the model prediction. This suggests that 
none of the models tested can serve as a general-purpose, 
image-difference model, and there is a need to develop a 
better model for image difference.  
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